

The Future of Connected Mobility

Insights from the Cinemo research
panels at CES 2026

Author: Maite Bezerra and Edward Wilford
January 2026

Contents

Introduction	3
Agentic AI and the Future of In-Car Experiences	3
The Evolution Beyond Generative AI	3
Accelerated Development Cycles: Beyond the Bottom Line	5
The Speed Imperative	5
Strategic Implementation Benefits	6
Car-to-Home Integration: Balancing Functionality with Privacy	6
The Drive for Seamless Continuity	6
High-Impact Use Cases and Agentic AI Integration	7
The Privacy Paradox: Control vs. Defeatism	7
The Path Forward: Three Critical Success Factors	8
Conclusions	9
The Broader Implications	9
Appendix	10
Methodology	10

Introduction

The automotive industry stands at a transformative crossroads where traditional vehicle manufacturing converges with cutting-edge technology, artificial intelligence, and connected ecosystems. At CES 2026, three pivotal panels—all sponsored by software firm Cinemo—explored the fundamental shifts reshaping how we interact with vehicles and their integration into our digital lives. These discussions revealed a comprehensive vision of the future where cars evolve from isolated transportation devices into intelligent, connected platforms that seamlessly integrate with our homes, anticipate our needs, and continuously improve through rapid development cycles.

The convergence of **Agentic AI, accelerated development methodologies, and home-vehicle integration** represents more than incremental technological advancement—it signals a paradigm shift toward software-defined vehicles (SDVs) that act as proactive digital partners. This transformation addresses growing consumer demands for unified experiences while navigating complex challenges around privacy, security, and data management.

Agentic AI and the Future of In-Car Experiences

The Evolution Beyond Generative AI

The automotive sector is witnessing a groundbreaking shift from Generative AI to **Agentic AI**—systems capable of reasoning, planning, and executing complex tasks autonomously. While Generative AI focused on content creation from prompts, Agentic AI represents a more advanced frontier that moves beyond reactive responses to proactive, intelligent partnerships.

Industry leaders identified three critical technological foundations enabling this transition:

- **Multimodality:** Modern AI models process visual inputs from cameras, complex auditory data, and app interfaces, allowing vehicles to perceive environments like humans
- **Reasoning and Planning:** Advanced "thinking models" evaluate multiple options, create structured plans, and assess potential outcomes before taking action
- **Tool Integration:** Agents interact directly with external software and APIs, including navigation tools, e-commerce platforms, and reservation services

This Omdia White Paper was commissioned by Cinemo

Table 1: Comparative Analysis: Generative AI vs. Agentic AI

Feature	Generative AI	Agentic AI
Primary Output	Text, images, or code	Actions and goal fulfillment
User Interaction	Reactive: Responds to specific prompts	Proactive: Anticipates needs and acts autonomously
Problem Solving	Content creation and summarization	Reasoning, multi-step planning, and tool use
Contextual Range	Limited to immediate session input	High: Accesses personal data and vehicle status
Core Value	Information synthesis	Task execution and concierge services

Source: Omdia

High-Impact Use Cases

Autonomous Schedule & Productivity Management

Agentic systems act as proactive secretaries, detecting traffic delays that impact scheduled meetings, autonomously accessing calendars, notifying participants via email, and scheduling video conferences to maintain productivity while ensuring road safety.

Context-Aware Logistics and Planning

Advanced agents provide decision support by browsing web inventory, calculating whether products fit specific vehicle dimensions, and automatically integrating stores as navigation stops when purchases are feasible.

The Family Digital Concierge

For family travel, agents recognize different occupants and:

- Tailor Entertainment: Switch to age-appropriate content for children
- Recall Preferences: Remember dietary restrictions when suggesting restaurants
- Proactive Exploration: Suggest sightseeing aligned with family interests

Seamless Multi-Device Connectivity

Systems facilitate unified audio flows where music transitions seamlessly from home speakers to vehicles, automatically adjusting volume and EQ based on cabin acoustics and climate conditions.

Accelerated Development Cycles: Beyond the Bottom Line

The Speed Imperative

The automotive industry has reached a critical inflection point where development cycles, traditionally measured in half-decades, are now compressed into months or weeks. This acceleration isn't merely competitive advantage—it's a survival requirement in an era defined by over-the-air updates and consumer-tech expectations.

Technological Foundations of Rapid Deployment

Hardware Abstraction and Standardization

Virtualized interfaces and standardized platforms like Android Automotive and VirtIO enable software decoupling from specific hardware, allowing the same code base to run across different vehicle models and hardware generations.

The "Shift-Left" Methodology

Testing and validation move earlier in development processes. By virtualizing electronic control units (ECUs) in the cloud, teams complete up to 80% of software validation before physical prototypes exist.

Cross-Industry Synergy

Convergence between automotive and robotics accelerates development, as both fields require machines that interpret complex environments and make real-time decisions, leading to shared simulation-driven iteration principles.

Table 2: Comparative Analysis: Traditional vs. Rapid SDV Development

Feature	Traditional Development	Rapid SDV Development
Cycle Duration	3–5 Years	4–6 Months (or weeks for iterations)
Hardware Dependency	Software "siloed" and tied to specific ECUs	Software is hardware-agnostic via abstraction layers
Testing Environment	Physical "HIL" (Hardware-in-the-Loop) benches	Cloud-native simulation and "Digital Twins"
Feedback Loop	Linear: Testing at build end	Continuous: Real-world data informs daily updates
Role of AI	Primarily end-user feature (e.g., ADAS)	Internal "Co-Developer" and diagnostic tool

Source: Omdia

This Omdia White Paper was commissioned by Cinemo

AI as Engineering Force Multiplier

AI evolution from vehicle feature to internal engineering tool provides several high-impact applications:

- **Automated Diagnostics:** AI ingests massive field vehicle data to identify and resolve software regressions in days rather than months
- **Code and Documentation Integrity:** Generative tools assist in writing robust documentation and verifying code quality
- **Hardware Porting:** AI agents provide 5x to 10x speed gains by automating trial-and-error processes in software porting

Strategic Implementation Benefits

The "Six-Week" Feature Launch

Standardized building blocks enable certain infotainment projects to move from 16-month timelines to under six weeks, allowing instant market trend responses.

Cloud-Native Global Collaboration

Cloud environments enable global teams across multiple time zones to access the same "virtual bench," ensuring bugs found in one region can be diagnosed and fixed by teams in another without physical hardware shipping.

Continuous Learning via Fleet Data

Connected vehicle fleets collect real-world interaction data to refine AI models and deploy improved safety or comfort features via OTA updates almost instantaneously.

Car-to-Home Integration: Balancing Functionality with Privacy

The Drive for Seamless Continuity

Consumer demand for unified experiences has reached critical mass. According to Futuresource Consulting's survey conducted in China and commissioned by Cinemo, nine out of ten consumers seek audio devices enabling smooth transitions between home and vehicle environments. However, current experiences often suffer from friction, including manual synchronization steps and poor interoperability across device manufacturers.

Standardization Efforts

The industry pursues standardization to address integration gaps. While smart home standards like Matter and Thread begin unifying domestic devices, their automotive sector application remains in early stages. The goal involves moving away from "siloed" experiences toward integrated environments where vehicles can "wake up" houses upon arrival or monitor safety hazards like carbon monoxide buildup in garages.

Table 3: Comparative Framework: Smart Home vs. Automotive Integration

Feature	Smart Home Ecosystem	Automotive Ecosystem
Primary Standard	Moving toward Matter/Thread for interoperability	Historically proprietary; moving toward Software-Defined Vehicles (SDVs)
Authentication	Primarily phone-based or voice-controlled	Emerging Driver Monitoring Systems (DMS) using in-cabin cameras
User Interaction	High adoption of voice assistants (Alexa, Google Home)	Increasing reliance on "Agentic AI" for in-car social/logistical tasks
Connectivity Model	Cloud-first with local hub options	Transitioning from phone projection (CarPlay) to embedded systems
Primary Goal	Automation of domestic routines	Safety, productivity, and entertainment continuity

Source: Omdia

High-Impact Use Cases and Agentic AI Integration

Conflict Resolution

AI agents are prototyped to manage social dynamics within vehicles, such as mediating disputes between children in back seats.

Contextual Awareness

Advanced systems adjust entertainment and climate based on driver destinations, transitioning from high-energy music for workdays to relaxing jazz when sensing drivers heading home.

Security and Peace of Mind

Home security owners increasingly seek to extend systems to vehicles, allowing monitoring of car cameras (dashcams) through home security applications.

The Privacy Paradox: Control vs. Defeatism

Despite an appetite among consumers for convenience, privacy remains a significant hurdle. Industry experts noted growing "data defeatism" among consumers—many feel

This Omdia White Paper was commissioned by Cinemo

they've lost data control and don't know how to regain it. While users express strong desires to "erase history" or revoke consent, integration complexity often makes true transparency difficult.

The automotive industry faces unique challenges managing high-stakes data. While smart thermostats might know temperature preferences, vehicles know locations, biometrics, and daily habits. Establishing trust through explicit consent and secure hardware-level authentication will be essential for mainstream adoption.

Conclusion and recommendations

The insights from CES 2026 reveal that the automotive industry is not merely evolving—it is undergoing a fundamental transformation that will redefine our relationship with mobility itself. The convergence of Agentic AI, accelerated development cycles, and seamless home-vehicle integration represents a paradigm shift toward intelligent transportation ecosystems that extend far beyond traditional automotive boundaries.

The Path Forward: Three Critical Success Factors

- **Balancing Intelligence with Trust** As vehicles evolve into proactive digital partners capable of reasoning, planning, and autonomous decision-making, the industry must prioritize transparent data practices and user control. The emergence of "data defeatism" among consumers signals an urgent need for clear privacy frameworks that enable the convenience of connected experiences without sacrificing personal autonomy. Success will depend on establishing trust through explicit consent mechanisms and secure, hardware-level authentication systems.
- **Embracing Development Velocity as Competitive Advantage** The compression of development cycles from years to weeks represents more than operational efficiency—it's a strategic imperative for survival in an increasingly dynamic market. Organizations that master cloud-native development, hardware abstraction, and AI-assisted engineering will capture market opportunities while those clinging to traditional methodologies risk obsolescence. The "six-week feature launch" capability will become the new industry standard.
- **Orchestrating Ecosystem Integration** The future belongs to companies that can seamlessly orchestrate experiences across the entire mobility ecosystem. As the boundaries between home, vehicle, and digital life continue to blur, success will require moving beyond proprietary solutions toward standardized, interoperable platforms that prioritize user experience over technological silos.

Conclusions

The Broader Implications

This transformation extends beyond automotive manufacturing to encompass urban planning, energy infrastructure, and social interaction patterns. As vehicles become intelligent nodes in a connected ecosystem, they will influence how cities are designed, how energy is distributed, and how we structure our daily lives. The companies and communities that recognize this broader impact—and plan accordingly—will shape the future of human mobility.

The road ahead demands bold vision, collaborative innovation, and unwavering commitment to user-centric design. The technologies showcased at CES 2026 provide the foundation, but the ultimate success of connected mobility will depend on our ability to implement these innovations in ways that enhance human potential. The future of transportation is not just about getting from point A to point B—it's about creating intelligent, responsive environments that anticipate our needs, respect our privacy, and seamlessly integrate into the fabric of our connected lives. The journey has begun, and the destination promises to be transformative.

Appendix

Methodology

This summary was compiled by Omdia analysts participating as moderators in panels at CES 2026 sponsored by Cinemo.

Further reading

[Agentic AI and the Future of In-Car Infotainment](#) (January 2026)

Maite Bezerra, Senior Principal Analyst, Digital Mobility

Edward Wilford, Senior Research Director, Automotive

askanalyst@omdia.com

Omdia consulting

Omdia is a market-leading data, research, and consulting business focused on helping digital service providers, technology companies, and enterprise decision makers thrive in the connected digital economy. Through our global base of analysts, we offer expert analysis and strategic insight across the IT, telecoms, and media industries.

We create business advantage for our customers by providing actionable insight to support business planning, product development, and go-to-market initiatives.

Our unique combination of authoritative data, market analysis, and vertical industry expertise is designed to empower decision-making, helping our clients profit from new technologies and capitalize on evolving business models.

Omdia is part of Informa TechTarget, a B2B information services business serving the technology, media, and telecoms sector. The Informa group is listed on the London Stock Exchange.

We hope that this analysis will help you make informed and imaginative business decisions. If you have further requirements, Omdia's consulting team may be able to help your company identify future trends and opportunities.

Get in touch

www.omdia.com
askanalyst@omdia.com

Copyright notice and disclaimer

The Omdia research, data, and information referenced herein (the "Omdia Materials") are the copyrighted property of TechTarget, Inc. and its subsidiaries or affiliates (together "Informa TechTarget") or its third-party data providers and represent data, research, opinions, or viewpoints published by Informa TechTarget and are not representations of fact.

The Omdia Materials reflect information and opinions from the original publication date and not from the date of this document. The information and opinions expressed in the Omdia Materials are subject to change without notice, and Informa TechTarget does not have any duty or responsibility to update the Omdia Materials or this publication as a result.

Omdia Materials are delivered on an "as-is" and "as-available" basis. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness, or correctness of the information, opinions, and conclusions contained in Omdia Materials.

To the maximum extent permitted by law, Informa TechTarget and its affiliates, officers, directors, employees, agents, and third-party data providers disclaim any liability (including, without limitation, any liability arising from fault or negligence) as to the accuracy or completeness or use of the Omdia Materials. Informa TechTarget will not, under any circumstance whatsoever, be liable for any trading, investment, commercial, or other decisions based on or made in reliance of the Omdia Materials.